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ENCS 533 – Advanced Digital Design 

Lecture 9 

More about RTL coding (Sequential VHDL) and Memories 
 

1 Introduction 
In this lecture we will look at two separate topics that will be necessary for you to 

begin the assignment. The first is how to code systems that use flip-flops, registers, 

and latches. It is often not necessary to explicitly instantiate flip-flops in our design. 

Instead, it is usually possible to write behavioural code that specifies the required 

timing behaviour, and the synthesis tool will then infer where the flip-flops should go 

when the behaviour is converted into a hardware realisation. The second issue is the 

description of memory devices. 

 

2 Defining clocks 
 

A clock is essentially a signal that alternates between 1 and 0. Here is one way to 

define such a signal: 

 
LIBRARY IEEE; 

USE IEEE.STD_LOGIC_1164.ALL; 

 

ENTITY mytest IS 

END ENTITY mytest; 

 

ARCHITECTURE simple OF mytest IS 

    SIGNAL clk: STD_LOGIC:=’0’; 

BEGIN 

    clk <= NOT clk AFTER 10 NS; 

END ARCHITECTURE simple; 

 

The basic idea is this. The statement shown in bold recomputes its right hand side 

every time its left hand side changes. Each time the statement runs, it queues a 

transition to take place 10 ns later. When this transition takes effect, the resulting 

change in the RHS value forces the statement to run again. And so on, ad infinitum. 

 

 
In order to make this work, we had to initialise the value of clk to ‘0’ or ‘1’. If we had 

left clk uninitialized, then at the start of the simulation clk would have the value ‘U’. 

This is a form of garbage value, and in VHDL any logical operation on a garbage 

input produces a garbage output. Specifically, clk <= NOT  ‘U’ would result in clk 

receiving the value ‘U’. So clk would be  permanently stuck at ‘U’. 

 

2.1 Another clock definition 
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Here is another way that we could define a clock signal. 

 
ARCHITECTURE number2 OF mytest IS 

    SIGNAL clk: STD_LOGIC; 

BEGIN 

    PROCESS  

    BEGIN 

   FOR i IN 0 TO 10 LOOP 

            clk <= TRANSPORT '0' AFTER i * 20 NS; 

  clk <= TRANSPORT '1' AFTER i * 20 NS + 10 NS; 

   END LOOP; 

   WAIT; 

    END PROCESS; 

END ARCHITECTURE number2; 

 

The PROCESS has no sensitivity list, so it runs as soon as simulation starts. The loop 

queues 20 transitions on clk to take place at times 0, 10, 20, … ns. If we had omitted 

TRANSPORT keyword, the VHDL would by default have used INERTIAL delay, which 

means that all the transitions being placed on the queue would have overwritten each 

other, and clk would never have changed. Here is a simulation of the resulting output: 
 

 
 

 

2.2 Detecting the clock edge 
In order to write descriptions of edge triggered devices, we need some way in VHDL 

to represent the edge of a clock signal. There are two ways we can do this: 

 

2.2.1 Signal attributes 

Signals within VHDL have various attributes that can be used. The syntax for 

referring to the value of an attribute is SignalName’Attribute. The apostrophe, 

used to separate the name from the attribute is pronounced “tick”. Here are some 

examples of useful attributes: 

• clk’EVENT is TRUE if clk has changed its value in the last delta, and FALSE 

otherwise 

• clk’STABLE is TRUE if clk has not changed its value in the last delta, and FALSE 

otherwise. 

• clk’STABLE ( 5ns ) is TRUE if clk has not changed its value for the last 5 ns, and 

FALSE otherwise. 

 

2.2.2. The rising_edge function 

The rising_edge function is contained in the STD_LOGIC_1164 package, and returns 

TRUE when clk has changed from 0 to 1 during the last delta. 

 

3 The D-type flip-flop 
The basic device that is used to accomplish synchronous operation is the D-type flip 

flop. 
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D 

Clk 

Q 

 
 

Here is the ENTITY definition for this device 

 
LIBRARY IEEE; 

USE IEEE.STD_LOGIC_1164.ALL; 

 

ENTITY dff IS 

    PORT ( d, clk  : IN  STD_LOGIC; Q  : OUT STD_LOGIC); 

END ENTITY dff; 

 

The behaviour of this device is as follows. When the clock is stable, Q simply holds 

its value constant. When a rising clock edge occurs, the output Q takes on the value 

that D has at the moment when the clock edge occurred. It then holds that value 

constant until the next rising clock edge occurs, at which time it updates itself again. 

 

Note that the output q does not update its value whenever d changes. So to write this 
 

ARCHITECTURE wrong OF dff IS 

BEGIN 

    q <= d; 

END ARCHITECTURE wrong; 

 

would give completely the wrong behaviour. Here is an architecture that correctly 

describes the behaviour of the device: 

 
ARCHITECTURE correct OF dff IS 

BEGIN 

    PROCESS (clk) 

    BEGIN 

        IF ( rising_edge(clk) ) THEN 

            q <= d; 

        END IF; 

    END PROCESS; 

END ARCHITECTURE correct; 

 

Whenever clk changes its value, the process will run. However, clk might have 

changed due to a falling edge of the clock (which should not trigger an update to q) so 

we need to insert an IF statement which causes q to be updated only on the rising 

edge of clk. 

 

Here is another way to express the D-type behaviour 

 
ARCHITECTURE number2 OF dff IS 

BEGIN 

    PROCESS (clk) 

    BEGIN 

        IF ( clk’EVENT and clk=’1’ ) THEN 

            q <= d; 

        END IF; 

    END PROCESS; 
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END ARCHITECTURE number2; 

 

The rising edge is recognised by the fact that clk’EVENT is TRUE (so clk must have just 

changed) and clk=’1’ (so it must have been a rising edge). Here is yet another 

approach: 

 
ARCHITECTURE number3 OF dff IS 

BEGIN 

    PROCESS (clk) 

    BEGIN 

        IF ( NOT clk’STABLE and clk=’1’ ) THEN 

            q <= d; 

        END IF; 

    END PROCESS; 

END ARCHITECTURE number3; 

 

3.1 Registers 

A register is a group of D-type flip-flops, all governed by the same clock. So here is 

an 8-bit register: 

 

D 

Clk 

Q 

8 8 

 
When there is a rising edge of the clock 

The value of D(7 downto 0) at that precise instant is read into the device 

That value appears at Q(7 downto 0) a moment (i.e. one delta) later. 

At other times 

Q(7 downto 0) holds it old value 

 

 

4 More about types and declarations 
 

4.1 Types 
All signals have a type. The type tells VHDL what sort of values a signal can assume. 

So far we have met type STD_LOGIC (which takes values ‘0’, ‘1’, ‘X’ and ‘U’) and 

type STD_LOGIC_VECTOR, which is an array of STD_LOGIC. 

 

There are also several other types available, such as INTEGER (which describes signals 

whose value is a whole number, e.g. 1 or 9 or -50) and CHARACTER (which describes 

signals whose value is a character, e.g. ‘a’ or ‘B’ or ‘z’). Here is an example that 

shows the declaration of a character signal, an integer signal and a STD_LOGIC signal. 

 
ARCHITECTURE simple OF example IS 

    SIGNAL a: CHARACTER; 

    SIGNAL b: INTEGER; 

    SIGNAL c: STD_LOGIC; 

BEGIN 

END ARCHITECTURE simple; 

 

4.2 Initialization during declaration 
When we declare a signal we can also give it an initial value, using the := operator. So 

here are examples of declaration of signals with initialisation: 
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ARCHITECTURE initialised OF example IS 

    SIGNAL a: CHARACTER :='H'; 

    SIGNAL b: INTEGER :=5; 

    SIGNAL c: STD_LOGIC :='X'; 

BEGIN 

END ARCHITECTURE initialised; 

 

4.3 Arrays 
You will have met arrays in other languages, such as C. VHDL also has arrays. An 

array is a list of items, all of which have the same type, which are indexed by a 

number. 

 

Suppose, for example, that I frequently use lists of 11 characters. I could set up a type 

which describes this sort of data. This would be done as follows: 

 
TYPE list11 IS ARRAY (0 TO 10) OF CHARACTER; 

 

I have used list11 as the name of this type. Now, when I declare a signal, I can use my 

new type. Suppose I want to create two 11-item lists, one called a the other called b. I 

could declare them like this: 

 
SIGNAL a, b: LIST11; 

 

Now suppose I want to initialise these signals as I declare them. The first will contain 

the characters Hello there and the second will contain How are you 

As before, we introduce an initialisation using the symbol :=. This time the 

initialisation isn’t a single item, but a list. We write each member of the list separated 

by commas. The entire list is contained in brackets: 

 
SIGNAL a: LIST11 :=(‘H’,’e’,’l’,’l‘,’o’,’ ’,’t’,’h‘,’e’,’r’,’e’); 

SIGNAL b: LIST11 :=(‘H’,’o’,’w’,’ ‘,’a’,’r’,’e’,’ ‘,’y’,’o’,’u’); 

 

So here is a complete example showing the declaration and initialisation of a and b: 

 
ARCHITECTURE simple OF example2 IS 

    TYPE list11 IS ARRAY (0 TO 10) OF CHARACTER; 

    SIGNAL a: LIST11 :=('H','e','l','l','o',' ','t','h','e','r','e'); 

    SIGNAL b: LIST11 :=('H','o','w',' ','a','r','e',' ','y','o','u'); 

BEGIN 

END ARCHITECTURE simple; 

 

So in this example a(0) has the value ’H’, a(1) is ‘e’, a(11) is ‘e’ and so on. 

 

 

4.4 Type conversion 
VHDL is a strongly typed language. This means that if a and b are of different types, 

you can’t just write  

 

a <= b; 

 

Instead you need to use a conversion function, which tells VHDL how to convert 

between two incompatible types. For example, suppose we have 
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ARCHITECTURE wrong OF example3 IS 

    SIGNAL a: INTEGER; 

    SIGNAL b: STD_LOGIC_VECTOR(7 DOWNTO 0) := X“FF”; 

BEGIN 

    a <= b;   --WRONG !! 

END ARCHITECTURE wrong; 

 

This would not compile correctly. The basic reason for this is that a and b are of 

different types. One of the reasons why VHDL won’t let you directly assign unalike 

types is in order to protect you from error. As we saw in lecture 1, it is not clear 

whether FF represents 255 or –1. To convert between integer and std_logic, there is a 

function called CONV_INTEGER. There are two different versions of this, one held in 

the sub-library
1
 IEEE.STD_LOGIC_UNSIGNED, and the other in STD.LOGIC_SIGNED. 

You have to open one of these up with a USE statement before you can use the 

CONV_INTEGER function. So here is a correct listing: 

 
USE IEEE.STD_LOGIC_UNSIGNED.ALL; 

 
ARCHITECTURE correct OF example3 IS 

    SIGNAL a: INTEGER; 

    SIGNAL b: STD_LOGIC_VECTOR(7 DOWNTO 0) := X“FF”; 

BEGIN 

    a <= CONV_INTEGER(b); 

END ARCHITECTURE correct; 

 

5 Memories 
A very simple example of a read-only memory (ROM) looks like this 

Item 0 

Item 1 

Item 2 

Item 3 

Item 4 

Item 5 

Item 6 

 
 
 

Data 

Address 

Item 2  - 1 n n 

w bits 

w 

 
 

The memory contains a series of 2
n
 items, each of which is w bits wide. An n-bit 

address input selects out one of the items, which is steered to the data output.  

 

5.1 An example 
As a specific example, imagine that we wanted to store the marks for 15 students in a 

ROM. Here are the marks: 

                                                
1 In the jargon of VHDL, a sub-library is called a package. 
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Student Mark 

0 72 

1 49 

2 67 

3 53 

4 43 

5 57 

6 61 

7 37 

8 48 

9 55 

10 79 

11 51 

12 40 

13 61 

14 58 

15 62 

 

Things become much easier if we express this data in hexadecimal rather than denary, 

so here is the table translated to hex: 

 
Student Mark 

0 48 

1 31 

2 43 

3 35 

4 2B 

5 39 

6 3D 

7 25 

8 30 

9 37 

A 4F 

B 33 

C 28 

D 3D 

E 3A 

F 3E 

 

We now store each of these items in the storage locations inside the ROM: 
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Item 0 = 48 

Item 1 = 31 

Item 2 = 43 

Item 3 = 35 

Item 4 = 2B 

Item 5 = 39 

Item 6 = 3D 

 
 
 

Data 

Address 

Item 15 = 3E 
4 

8 
 

8 bits 
 

 
The index of the list runs from 0 to 15 denary (0 to F hex), which needs four binary 

bits (i.e.one hex digit) to represent. To represent the number from 0 to 100 denary ( 0 

to 64 hex)  could be done in 7 bits, but it’s often easier to keep the width of our signal 

as a power of 2, so we choose 8 bits to represent the marks. 

 

5.2 The ENTITY of the ROM example 
Firstly we need to write the ENTITY declaration. Here are the inputs and outputs of 

the ROM. 

 

address 
 

4 
 rom 

 

data 
 

8 
 

 
So here is an ENTITY declaration: 

 
LIBRARY IEEE; 

USE IEEE.std_logic_1164.ALL; 

USE IEEE.std_logic_unsigned.ALL; 

 

ENTITY rom IS 

 PORT ( address: IN   STD_LOGIC_VECTOR(3 DOWNTO 0); 

        data   : OUT  STD_LOGIC_VECTOR(7 DOWNTO 0) ); 

END ENTITY rom; 

 

5.3 The ARCHITECTURE of the ROM example 
The contents of the ROM is essentially a list of 8-bit data items, which are indexed by 

the address. This corresponds to an array. We will create an array called rom_data. 

The various items in this list will be the marks of the students, stored as 8-bit binary 

numbers (i.e. 2-digit hex numbers). So for example: 

rom_data(2) = 43 

rom_data(6) = 3D 

and so on. 
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So here is the architecture description for the ROM: 
 

ARCHITECTURE simple OF rom IS 

    TYPE rom_array IS ARRAY ( 0 TO 15 ) OF STD_LOGIC_VECTOR ( 7 DOWNTO 0 ); 

    SIGNAL rom_data: rom_array := ( X"48",  X"31",  X"43",  X"35", 

      X"2B",  X"39",  X"3D",  X"25", 

      X"30",  X"37",  X"4F",  X"33", 

      X"28",  X"3D",  X"3A",  X"3E" ); 

BEGIN 

 data <= rom_data ( CONV_INTEGER (address) ); 

END ARCHITECTURE simple; 

 

The statement  

 
 data <= rom_data ( CONV_INTEGER (address) ); 

 

takes the member of the list that is indexed by address and copies into the data output 

(after converting it from STD_LOGIC_VECTOR to integer, so as to be a valid index for the 

array). 

 

5.4 A testbench for the ROM example 
The test bench looks like this: 

 

input_address 

Testrom 

address 
 

4 
 rom 

 

data 
 

8 
 

data_output 

 
 

We will generate addresses and apply them to the ROM, and look at the data that 

emerges to see if it corresponds to the table of students’ marks. Here is a possible 

testbench: 

 
LIBRARY IEEE; 

USE IEEE.std_logic_1164.ALL; 

 

ENTITY rom_test IS 

END ENTITY rom_test; 

 

ARCHITECTURE simple OF rom_test IS 

    SIGNAL input_address: STD_LOGIC_VECTOR (3 DOWNTO 0); 

    SIGNAL output_data: STD_LOGIC_VECTOR (7 DOWNTO 0); 

BEGIN 

    g1: ENTITY work.rom(simple)  

        PORT MAP ( address=>input_address, data=>output_data); 

 

    input_address <= X"0",  

                     X"1" AFTER 20 NS, 

                     X"2" AFTER 40 NS, 
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                     X"3" AFTER 60 NS; 

END ARCHITECTURE simple; 

 

And here is the result of running the testbench through the simulator: 

 

 
 

The results give us confidence that the design is working correctly; as we apply the ID 

of the student to the input, we have that student’s mark returned at the output. 

 

6 Shift registers  
 

Another important class of devices is the shift register. Here are a few typical 

“standard patterns” of VHDL description for these devices.  

 

6.1 Basic shift register  

 

The basic shift register contains n memory bits.  

 

 
 
At each clock cycle, the content of the memory shifts one stage to the right. This can 

be coded as follows  

 
LIBRARY IEEE;  

USE IEEE.Std_Logic_1164.ALL;  

 

ENTITY shift IS  

PORT ( clk: IN STD_LOGIC;  

l_in : IN STD_LOGIC;  

r_out : OUT STD_LOGIC );  

CONSTANT n: INTEGER:=8;  

END ENTITY shift;  

 



 11 

ARCHITECTURE simple Of shift IS  

SIGNAL mem : STD_LOGIC_VECTOR (n-1 DOWNTO 0);  

BEGIN  

PROCESS ( clk )  

BEGIN  

IF rising_edge (clk) THEN  

r_out <= mem(0);  

mem (n-2 DownTo 0) <= mem (n-1 DownTo 1);  

mem (n-1) <= l_in;  

END IF;  

END PROCESS;  

END ARCHITECTURE simple; 

  

6.2 A more elaborate shift register  
Now we extend the example to a more elaborate and fully featured shift register.  

 

 
 
The contents in the shift register are held in the memory array called mem. If the reset 

input goes high, then the device is asynchronously reset. In order to extend the 

flexibility of the device, we make n a generic parameter. The function of the shift 

register is established by the mode input. The device has four modes:  

00: hold. The memory array is preserved unchanged.  

01: shift left: The memory array shifts one position to the left . Mem0 receives 

its value from r_in, the right input.  

10: shift right: The memory array shifts one position to the right . Memn-1 

receives its value from l_in, the left input.  

11: load: The memory array undergoes a parallel load from the d input.  

Here is the corresponding VHDL code:  

 
LIBRARY ieee;  

USE ieee.std_logic_1164.ALL; 

  

ENTITY shifter IS  

GENERIC ( n: POSITIVE:=8);  

PORT ( clk, reset: IN STD_LOGIC;  

l_in, r_in: IN STD_LOGIC;  

mode: IN STD_LOGIC_VECTOR(1 DOWNTO 0);  

d: IN STD_LOGIC_VECTOR(n-1 DOWNTO 0);  

q: OUT STD_LOGIC_VECTOR(n-1 DOWNTO 0));  

END ENTITY shifter;  



 12 

ARCHITECTURE simple OF shifter IS  

SIGNAL mem: STD_LOGIC_VECTOR(n-1 downto 0);  

BEGIN  

PROCESS (clk,reset)  

BEGIN  

IF (reset='1') THEN  

mem <= (others => '0');  

ELSIF rising_edge(clk) THEN  

CASE mode IS  

WHEN "00" => NULL;  

 

WHEN "01" => mem(n-1 DOWNTO 0) <=          

mem(n-2 DOWNTO 0) & r_in;  

 

WHEN "10" => mem(n-1 DOWNTO 0) <= 

l_in & mem(n-1 DOWNTO 1);  

 

WHEN "11" => mem(n-1 DOWNTO 0) <= 

d(n-1 DOWNTO 0);  

 

WHEN OTHERS => NULL;  

END CASE;  

END IF;  

END PROCESS;  

q <= mem;  

END ARCHITECTURE simple;  

 

Null is a keyword of VHDL, which means “do nothing”.  

 

6.3 Clarifying the code by using constants to provide names  
 

It may make the code easier to understand if we give each of the modes a name, like 

this:  

 
ARCHITECTURE nicer OF shifter IS  

SIGNAL mem: STD_LOGIC_VECTOR(n-1 downto 0);  

CONSTANT hold: STD_LOGIC_VECTOR(1 downto 0):= "00";  

CONSTANT sh_left: STD_LOGIC_VECTOR(1 downto 0):= "01";  

CONSTANT sh_right: STD_LOGIC_VECTOR(1 downto 0):= "10";  

CONSTANT load: STD_LOGIC_VECTOR(1 downto 0):= "11";  

BEGIN  

PROCESS (clk,reset)  

BEGIN  

IF (reset='1') THEN  

mem <= (others => '0');  

ELSIF rising_edge(clk) THEN  

CASE mode IS  

WHEN hold => NULL;  

WHEN sh_left => mem(n-1 DOWNTO 0) <= 

mem(n-2 DOWNTO 0) & r_in;  
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WHEN sh_right => mem(n-1 DOWNTO 0) <= 

l_in & mem(n-1 DOWNTO 1);  

WHEN load => mem(n-1 DOWNTO 0) <= 

d(n-1 DOWNTO 0);  

WHEN OTHERS => NULL;  

END CASE;  

END IF;  

END PROCESS;  

q <= mem;  

END ARCHITECTURE nicer; 

 

Summary 
In this lecture we have looked in more depth at different types in VHDL. We have 

looked at how ARRAYs can be used to respresent memory structures. We also looked at 

clock generation and RTL coding 

 

You should now know... 
 

How to form simple memory structures using ARRAYs. 

Memories in VHDL 

Clock generation for VHDL simulation 

Shift registers 

 


